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Density Estimation 
Estimate the density functions without the 
assumption that the p.d.f. has a particular 
form. 
The idea of estimating c.d.f. (i.e., F(x0)) is 

to count the number of observations not 
larger than x0. Since the p.d.f. is the 
derivative of c.d.f., the natural estimate of 
the p.d.f. would be                                         
However, this is likely not a good estimate 
since most points have zero density.
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Therefore, we may want to assign a nonzero 
weight to points near points with 
observations. Intuitively, the weight should 
be larger if a point is close to a observation, 
but this is not necessary to be true. 
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Smoothing, a process of obtaining a 
corresponding smooth set of values from 
irregular set of observed values, is closely 
linked computationally to density estimation. 
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Histogram
The histogram is the simplest and most 

familiar method of a density estimator.
Break the interval [a,b] into m bins of 

equal width h, say                                              
Then the density estimate of                  is 

where nj is the number of observations in 
the interval  
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Notes: 
(1) The histogram density estimate looks like 

the sample c.d.f. and is a step function. 
(2) The smaller h is, the smoother the density 

estimate will be. However, given a finite 
number of observations, when h is smaller 
than most of the distances between two 
points, the density estimate would become 
more discrete. 

Q: What is the “optimal” choice of h? 
(The number of bins for drawing a histogram)



Histogram Estimate (n=28, N(0,1))
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The Naïve Density Estimator
Instead of rectangle, allow the weight is 

centered on x. From Silverman (1986), 

where 

Because the estimate is constructed from a 
moving window of width 2h, it is also 
called a moving-window histogram. 
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Histogram Estimate (n=28, N(0,1))
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Kernel Estimator:
The naïve estimator is better than the 

histogram, since weight is based on distance 
between observations and x. However, it 
also has jumps (similar to the histogram 
estimate) at the observation points. By 
modifying the weight function w(•) to be 
more continuous, the raggedness of the 
naïve estimate can be overcome.  



The kernel estimate is as following: 

where                        is the kernel of the 
estimator.   
Usual choices of kernel functions: 

Guassian (i.e., normal), Cosine, Rectangular,
Triangular, Lapalce.  
Note: The choice of the bandwidth (i.e., h) is 

more critical than the kernel function.
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Example of a Kernel Estimator



Nonparametric Density Estimates (n=28, N(0,1))

x

f(x
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

True
h=0.1 (Naive)
h=0.1 (Kernel)



Nearest-neighbor Estimator: (NNE)
Another usage of observations is to use the 

concept of “nearness” between points and 
observations. But, instead of distance, the 
nearness is measured according to the 
number of other observations between a 
point and the specified observation. 

For example, if x0 and x are adjacent in 
the ordering, then x is said to be 1-neighbor 
of x0. If another observation between x0 and 
x, then x is said to be 2-neighbor of x0.



The nearest-neighbor density estimates are 
based on averages of the k nearest neighbors 
in the sample to the point x: 

where          is the half-width of the smallest 
interval centered at x containing k data points. 

Note: Unlike kernel estimates, the NNE use 
variable-width window.  
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Nearest-neighbor Estimates (n=28, N(0,1))
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Linear Smoother:
The goal is the smooth estimates       of a 

regression function                                  A 
well-known example is the ordinary linear 
regression, where the fitted values are 

A Linear Smoother is the one which the 
smooth estimate satisfies the following form:

where S is an n × n matrix depending on X.
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Running Means:
The simplest case is the running-mean 

smoother which computes      by averaging 
yj’s for which xj falls in a neighborhood of xi.
One possible choice of the neighborhood Ni

is to adapt the idea in Nearest-neighbor where 
Ni is the one with points xj for which |i–j|≤ k. 
Such a neighborhood contains k points to the 
left and k points to the right. (Note: The two 
tails have fewer points and could be less 
smooth.) 
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Note: The parameter k, called the span of the 
smoother, controls the degree of smoothing.

Example 2. We will use the following data to 
demonstrate the linear smooth methods 
introduced in this handout. Suppose that 

where the noise εi is normally distributed with 
mean 0 and variance 0.04. Also, the setting of 
X is 15 points on [0,0.3π], 10 points on       
[0.3 π,0.7π] and 15 points on [0.7π,π].    
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Kernel Smoothers
The product of a running-mean smoother is 

usually quite unsmooth, since observations 
are getting equal weight regardless their 
distance to the point to be estimated. The 
kernel smoother with kernel K and window 
2h uses 

where
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Notes: 
(1) If the kernel is smooth, then the resulting 

output will also be smooth. The kernel 
smoother estimate can thus be treated as a 
weighted sum of the (smooth) kernels, 

(2) The kernel smoothers also cannot correct 
the problem of bias in the corners, unless the 
weight of observations can be negative. 





Spline Smoothing:
For the linear smoothers discussed previously, 

the smoothing matrix S is symmetric, has 
eigenvalues no greater than unity, and produce 
linear functions. 
The smoothing spline is to select       so as to 

minimize the following objective function:

where λ ≥ 0 and M∈ C3. 

M̂

∑ ∫
=

+−=
n

i

b

aii dttMxMy
n

MS
1

22 ,)](''[)]([1)( λλ



Note: Two terms of the right-hand side of the 
objective function usually represent 
constraints opposite to each other. 
The first term measures how far the 

smoothers differ from the original 
observations. 
The second term, also known as roughness

penalty, measures the smoothness of the 
smoothers. 

Note: Methods which minimize the objective 
function are called penalized LS methods.



What are Splines?
Spline functions, often called splines, are 

smooth approximating functions that behave 
very much like polynomials. 
Splines can be used for two purposes:

(1) Approximate a given function (Interpolation)
(2) Smooth values of a function observed with     

noise

Note: We use terms “interpolating splines” and 
“smoothing splines” to distinguish.  



Loosely speaking, a spline is a piecewise 
polynomial function satisfying certain 
smoothness at the joint points. Consider a 
set of points, also named the set of knots, 

with
Piecewise-polynomial representations:
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Q: Is it possible to use a polynomial to do the job?



A cubic spline can be expressed as  

which can also be expressed as 
where 
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Example 2. (continued)
We shall use cubic splines with knots at 

{0,π/3,2π/3,π} and compare the results of 
smoothing for different methods. 

Note: There are also other smoothing methods 
available, such as LOWESS and running 
median (i.e., nonlinear smoothers), but we 
won’t cover these topics in this class.
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